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Input for  the IBUU code:

• Target: 70Zn
• Projectile: 70Zn
• Impact parameter: 5.5 fm

We let the code run until 250 fm/c and analyze the final nucleon 
phase-space distribution. The free protons are determined when 
no other nucleons are within a space distance Δr = 3 fm and 
momentum distance Δp = 0.3 GeV/c. The deuteron, triton and 
3He are analyzed by the coalescence model.
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Introduction

The recent advances made in radioactive nuclear beam facilities 
allow us to study collisions between nuclei with unequal number 
of protons and neutrons. Studying these collisions would help us 
obtain information about the structure of nuclei with large isospin 
asymmetry and yield a better understanding of many 
astronomical processes such as nuleosynthesis in pre-supernova 
evolution of massive stars and the cooling process of proto-
neutron stars (B. A. Li et al., Phys. Rep. 464,113 (2008)).

The final objective in the study of heavy-ion reactions induced by 
neutron-rich nuclei is to obtain information about the equation of 
state of asymmetric nuclear matter, specially its isospin-
dependent term, i.e., the density dependence of the nuclear 
symmetry energy. Although nuclear symmetry energy at normal 
nuclear matter density is known to be about 30 MeV from the 
empirical liquid-drop mass formula, we lack the knowledge of its 
value at lower and higher densities.

Probes for density dependence of symmetry energy: 
1) Collective flow 
2) Isospin diffusion
3) Neutron skin thickness
4) π-/π +, K0/K+, …

Nuclear Symmetry Energy

IBUU transport model
The isospin-dependent Boltzmann-Uehling-Uhlenbeck (IBUU) 
model has been shown to be useful in studying the dynamics  
and isospin effects in heavy-ion reactions. The BUU equation (G. 
F. Bertsch and S. Das Gupta, Phys. Rep. 160, 189 (1988))

is solved by means of test particle method. It is based on the 
cascade model considering mean-field effects and quantum 
effects such as Pauli blocking and Fermi motion. 

Momentum-Dependent Interaction (MDI)

One of the most important inputs in our transport model is the 
single-nucleon potential. We used an isospin- and momentum-
dependent single-nucleon potential derived from a Hartree-Fock 
approximation based on a Gogny-like effective interaction (C. B. 
Das et al., Phys. Rev. C 67, 034611 (2003))

where τ = 1/2 (-1/2) denotes neutrons (protons); τ ≠ τ’,  fτ(r,p) 
represents the phase-space distribution functions, A u(x), A l(x), B, 
C τ, τ, C τ , τ ‘, σ and Λ are constants;  E(ρ0)/A = -16 MeV, Esym(ρ0) = 
30.5 MeV, K0 = 212 MeV, where ρ0 = 0.16 fm-3. The x is adjusted 
to vary the symmetry energy behavior at ρ ≠ ρ0.

The neutron (proton) single-nucleon potential can also be 
expressed as

where “+” and “-” are for neutrons and protons, respectively, and 
Usym is the symmetry potential.

Coalescence model

The coalescence model analyses the production of light clusters 
(deuteron, triton and 3He) by evaluating the overlap of the wave 
functions of nucleons after heavy-ion collisions with the wave 
functions of light clusters (L. W. Chen et al., Nucl. Phys. A 729, 
809 (2003)) 

Results
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Various studies show that the energy per nucleon E(ρ,δ) in 
asymmetric nuclear matter can be approximated by the parabolic 
function

where E(ρ,0) is the equation of state of symmetric nuclear matter 
at density ρ, Esym(ρ) is the symmetry energy, and     
δ≡(ρn-ρp)/(ρn+ρp) is the isospin asymmetry .

Symmetry energy is defined as:

which is approximately the energy cost to convert all the protons  
in a symmetric nuclear matter into neutrons at the fixed density ρ.

Fig. 1. (Left) Symmetry energy as a function of density for the MDI interaction 
with x = 0 and x = -1. Isoscalar potential U0 (Top right) and symmetry potential  
Usym (bottom right) as functions of momentum with x = 0 and x = -1.  U0 is 
consistent with  the  Schrödinger equivalent optical potential extracted by Hama 
et al. up to 500 MeV/c.

where G is the statistical factor with a value of 3/8 and 

is the Wigner function of deuteron with r = rp – rn and p = (pp - pn)/2, 
and the parameter σ is determined by the charge root-mean-square 
radius of the deuteron. 

Similarly the Wigner phase-space density for triton or 3He is given 
by:

where b is determined from the root-mean-square radii of triton or 
3He. κ and λ are the relative coordinates, and  pκ and pλ are the 
relative momentum .

• Test particles: 200
• Number of events: 100
• Energy: 35 MeV/A

Fig. 3. Energy distribution of proton, deuteron, triton and 3He from the MDI interaction 
with x = 0 and x = -1 in the center-of-mass frame.

Fig. 4. Transverse flow as a function of rapidity of proton, deuteron, triton and 3He from 
the MDI interaction with x = 0 and x = -1 compared with the experimental data (from 
Zachary Kohley dissertations).

Fig. 5. Flow parameter (F = d<px/A>/d[(y/ybeam)cm]) of proton, deuteron, triton and 3He 
extracted from the transverse flow within -0.3 < (y/ybeam)cm< 0.3 from the MDI interaction 
with x = 0 and x = -1 compared with the experimental data. 

Fig. 2. Time evolution of the density profile in the reaction  (x-z) plane.

•The cluster multiplicity is slightly larger for stiff symmetry energy.
•The transverse flow of light clusters, from the IBUU model using 

MDI interaction along with the coalescence model, is smaller for
proton and larger for deuteron, triton and 3He compared to the
experimental data.

• In order to get more obvious symmetry energy effects on the
transverse flow, good statistics are required. Also, effects of the
in-medium NN cross sections and other cluster formation
mechanisms need to be studied.

Conclusions
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